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ABSTRACT

The partial correlation (PARCOR) coefficients of the

least squares lattice filter may be used to conveniently and

efficiently represent various types of acoustic signals.

Because a stationary time series may be represented by a

small number of PARCOR coefficients, the PARCOR coefficients

have been widely used as effective pattern recognition

parameters for the representation and transmission of

information. This thesis establishes the PARCOR

coefficients of the least squares lattice filter as

efficient and effective pattern recognition features for the

classification and identification of synthesized steady

state vowel-like sounds. The PARCOR coefficient technique

is shown to be a much quicker and more computationally

efficient method of vowel identification than identification

by formant frequencies, which involves the computation of

poles and zeros and the back-calculation of formant

frequencies and formant bandwidths.

It is well documented in the literature that steady

state vowel sounds may be identified and classified

according to their formant frequencies. The formant

frequencies of each vowel may be shown to cluster together,

and the vowel clusters may be separated from one another in

the space defined by some subset of the formant frequencies

(Barney, 1952; Peterson, 1952; Peterson & Barney, 1952;
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Potter & Steinberg, 1950)

When a spoken vowel is presented in time series form,

utilization of these clustering properties requires a

transformation from time domain to frequency domain (formant

frequencies) which is quite complicated and computationally

expensive. A more efficient vehicle for classifying steady

state vowel-like sounds is developed by this author to be

the forward PARCOR coefficients KP, i=1,2, . . . p which

arise naturally as intermediate parameters in a pth-order

least squares complex adaptive lattice filter (Hodgkiss &

Presley, 1981, 1982).

The formant frequency data used in this study are those

measured by Peterson and Barney (1952; Barney, 1952;

Potter & Steinberg, 1950), obtained through the courtesy of

the Bell Laboratories Archives. A time series for each

vowel utterance is generated from three formant frequencies

using a six-pole IIR digital recursive filter. The time

series are then inverse filtered via a six-zero complex

adaptive lattice filter (Alexandrou & Hodgkiss, Note 1;

Hodgkiss & Presley, 1981, 1982), producing, for each

utterance, a set of six PARCOR coefficients.

The PARCOR coefficients produced by the lattice exhibit

the same clustering properties as do the formant

frequencies; namely, minimum cluster size (average
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intracluster distance) in two dimensions for all vowels, and

maximum cluster separability (intercluster distance) in six

dimensions for selected adjacent-vowel pairs. As a combined

measure of compactness and separability, the ratio of the

sum of average intracluster distances to intercluster

distance for each of the adjacent-vowel pairs yielded

roughly equivalent results for the formant frequencies and

PARCOR coefficients. Graphically, the first two PARCOR

coefficients are sufficient for the identification of the

first nine vowels, whereas the third PARCOR coefficient is

necessary for identification of the tenth vowel, /3/. These

results are analogous to those observed for the clustering

of formant frequencies.
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CHAPTER I

INTRODUCTION

The partial correlation (PARCOR) coefficients of the

least squares lattice may be used to conveniently and

efficiently represent various types of acoustic signals.

Because a stationary time series may be represented by a

small number of PARCOR coefficients, the PARCOR coefficients

have been widely used as effective pattern recognition

parameters for the representation and transmission of

information. This thesis establishes the PARCOR

coefficients of the least squares lattice as efficient and

effective pattern recognition features for the

classification and identification of synthesized steady

state vowel-like sounds. The PARCOR coefficient technique

is shown to be a much quicker and more computationally

efficient method of vowel identification than identification

by formant frequencies, which involves the computation of

poles and zeros and the back-calculation of formant

frequencies and formant bandwidths. Even though this thesis

addresses identification of vowels, it is clear that the

PARCOR coefficients may be used to identify characteristics

of other acoustic and electromagnetic signals.

It is well documented in the literature that steady

state vowel sounds may be identified and classified
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according to their formant frequencies. The formant

frequencies of each vowel may be shown to clustec together,

and the vowel clusters may be separated from one another in

the space defined by some subset of the formant frequencies

(Barney, 1952; Peterson, 1952; Peterson & Barney, 1952;

Potter & Steinberg, 1950)

When a spoken vowel is presented in time series form,

utilization of these clustering properties requires a

transformation from time domain to frequency domain (formant

frequencies) which is quite complicated and computationally

expensive. A more efficient vehicle for classifying steady

state vowel-like sounds is developed by this author to be

the forward PARCOR coefficients K! , i=1,2, . . . p which

arise naturally as intermediate parameters in a pth-order

least squares complex adaptive lattice filter (Hodgkiss &

Presley, 1981, 19821.

The specific purpose of this research is to establish

the value of the PARCOR coefficients as efficient and

effective pattern recognition features for the

classification and identification of (synthesized) steady

state vowel-like sounds. Specifically, the intent of this

thesis is to show that for steady state vowel-like

utterances, the PARCOR coefficients of each vowel will

cluster together, and that the ten English vowels may be

separated from one another in the space defined by some
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subset of the PARCOR coefficients in much the same way as

" the formant frequencies cluster and separate the vowels. In

other words, the inverse filtering procedure may be

considered as a change of variable (Turner, 1982); the

PARCOR coefficients behave in this manner when the related

formant frequencies themselves exhibit a clustering

behavior.

A time series for each vowel utterance is generated

from three formant frequencies using a six-pole IIR

recursive digital filter. The formant frequency data are

those measured by Peterson and Barney (1952; Barney, 1952;

Potter & Steinberg, 1950), obtained through the courtesy of

the Bell Laboratories Archives. A six-zero complex adaptive

least squares lattice filter is used as an inverse filter on

each time series, producing, for each, a set of six PARCOR

coefficients.

Considerable motivation exists for the development of a

system identification technique which does not require the

calculation of formant frequencies and bandwidths from a

time series. Specifically, in the field of speech

processing (Markel, 1972, 1973; McCandless, 1974; Wakita &

Kasuya, 1977), researchers have commonly calculated the

coefficients, aj, of the denominator polynomial from the

transfer function of an inverse filter and then obtained the

formant frequencies from the roots of the polynomial. As
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stated previously, this is a complicated calculation. For

applications where frequencies of the formants are not

important but desired for vowel identification clustering, a

change of clustering variable to the PARCOR coefficients

would eliminate the expensive and complicated computation.

Vowel Identification by Formant Frequency

During voiced speech, when the vocal tract is excited

by the glottal source, the spectral peaks which occur are

referred to as the formants of the particular speech sound.

For the majority of male speakers the first three formants

lie in the ranges 150-850 Hz., 500-2500 Hz., and

1700-3500 Hz.. Formants for women and children are higher

in frequency, due, in part, to the smaller size of their

vocal mechanisms (Fant, 1956).

Some speech sounds, such as steady state vowels, may be

identified or characterized by their formant frequencies and

the bandwidths and levels of those formant frequencies.

When different speakers speak one of the vowels, the

utterances are different for each speaker. In the

perceptual space defined by the frequencies of the formants

(which is referred to as the formant space), these

differences manifest themselves, for each vowel, as a

cluster of points around some average value. In the speech

literature, the first three formants are used widely for
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adequate vowel identification, (Peterson, 1952; Peterson &

Barney, 1952; Potter & Steinberg, 1950), although

considerable evidence has been offered in the literature

both for and against the necessity of more formants, formant

bandwidths, and/or formant amplitudes (Peterson, 1952;

Peterson, 1961; Bernstein, 1981; Potter & Steinberg,

1950), and fundamental frequencies of excitation (Foulkes,

1961; Peterson, 1961) for vowel identification. A popular

three-dimensional mechanism for vowel identification is a

plot of the first three formant frequencies F1 , F2 , F3 , in

the perceptual coordinate space defined by the axes Fl, F2,

and F3. A base 10 logarithmic scale is usually used to

account for the nonlinearities of the ear. The spatial

position of the articulators and the vocal mechanism at any

point in time directly affect the frequency position of the

resonances of the vocal tract by changing the relative sizes

of different parts of the tract.

The location of a vowel in the "formant space" defined

by F1 and F2 corresopnds to the spatial location of the

tongue hump in the two-dimensional representation of the

oral cavity for that vowel. In other words, the formant

frequency space classification seems to have a physical

significance. Figure 1 shows the configuration of the

articulators for the ten English vowels (adapted from

Potter, Kopp, & Kopp, 1966, chap. 12) and their
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corresponding relative tongue hump positions in the vowel

quadrilateral (adapted from Denes & Pinson, 1963, p. 55).

If the vowels are classified based on these tongue hump

positions; (i.e., /i/, as in the word "heed" is a high,

front vowel, whereas /7/, as in the word "hawed" is a low

back vowel), the classifications are similar to those

obtained using the formant space plots. The Peterson and

Barney study is discussed and results of graphical and

quantitative analyses of the formant frequency data are

presented in Chapter II.

Acoustic Tube Vocal Tract Models

There are many applications where the PARCOR

coefficients have a direct physical relationship to sound

generation mechanisms. One such case is the generation of

speech sounds by the human vocal system. The vocal tract is

often modeled as an acoustic tube (Dunn, 1961; Flanagan,

1972; Markel & Gray, 1976, chap. 4; Wakita, 1973a, 1973b,

1979; Wakita & Gray, 1975) excited by either a voiced or

unvoiced source somewhere along its length, with appropriate

*boundary conditions which depend on the circumstances of

phonation. The PARCOR coefficients of the lattice structure

have a direct physical relationship to the reflections

between sections of the acoustic tube. Specifically, the

area ratio between successive sections is defined

.9
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Ill (heed) I/l (hid) /el (head) I~l (had) lal (hod)

131, (hawed) IUI (hood) /ul (who'd) IA (hud) I/l (heard)

(a)

U

U.

T ~ Ae

Figure 
. (a) Schematic 

vocal tract profiles 
for the

production 
of English 

vowels. 
(Adapted 

from Potter, 
Kopp, &

4 (b)

Kopp, 1966, chap. 12) (b) Tongue hump positions for the ten
English vowels. (Adapted from Denes & Pinson, 1963, p. 55)
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(WakiCa, 1979, p. 281) as

Ajaj l-Kj
= j=l, 2, . . . p.

Ai l+Kj

where the Aj are the areas of the sections of the acoustic

tube and the Kj are the PARCOR coefficients for a pth-order

model. Wakita (1973b) suggested that the area function of

the acoustic tube (determined from a ladder implementation

of the linear prediction technique) could be used to detect

obstructions in the vocal tract. If the tube is considered

to be lossless, of length L, constant cross-sectional area,

and closed at the vocal fold end while open at the lip end,

resonances occur at the frequencies corresponding to L=nX/4;

rml, 2, .... where X is the wavelength of the

fundamental resonant frequency.

Autoregressive Model for Vowel Representation

The acoustic tube model of the vocal tract lends itself

directly to a mathematical model for a spoken vowel sound.

Non-nasal vowels have been modeled widely in the speech

literature as autoregressive (AR) processes of order p,

generated by passing a white input time series, v(n),

through a pth-order all pole filter with transfer function

1 Z(z)
H(z)= =

A(z) V(z)

where A(z)=l-Z ajz and the output process,
P=!
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z n)= a. z(n-j)+v(n).=I

The inverse of a pth-order AR process is a pth-order

moving average (MA) process, generated by passing the input,

v(n), through a pth-order all zero filter with transfer

function

Z(z)
H(z) B(z) = -

V(z)

p p
-kwhere B(z)=1- Z bkz and z(n)=  bk v(n-k).k: k:

The least squares lattice filter used in this study is

a feed-forward MA (all-zero) lattice. This inverse lattice

filter produces a whitened output spectrum by placing a zero

at the location of each pole in the input spectrum. Optimal

whitening is obtained when the following conditions are

satisfied (because of the one to one correspondence of zeros

to poles): 1) AR input processes are used as the lattice

input, and 2) the order of the lattice filter chosen to be

equal to the order of the input AR process. The fitting of

an AR model to a time series is equivalent to the method of

maximum entropy spectral analysis (Burg, 1967; Macina,

1981; Papoulis, 1981; Parzen, 1974; Ulrych & Bishop,

1975). The maximum entropy technique assumes maximum

uncertainty with respect to the unknown information about

the signal (outside the sampling interval).
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Because the aim of this research is to illustrate the

pattern recognition capabilities of the PARCOR coefficients

for data with known formant frequencies (data which had

previously been shown to cluster in the frequency domain),

the vowels are modeled as sixth-order AR processes and the

lattice is specified to be sixth-order to maximize the

accuracy of the PARCOR coefficients. The modeling of a

vowel sound as a sixth-order AR process is a gross over-

simplification in terms of speech production. However, it

is a necessary one if the fundamental intent of the research

is to be respected. Generation of vowel utterances from

formant frequencies is discussed in Chapter III.

The Linear Prediction Problem

The inverse filter is determined through the use of the

linear prediction technique. This technique has been used

widely in the speech field as well as in geophysics and

neurophysics (Landers & Lacoss, 1977; Makhoul, 1975; Wood

& Treitel, 1975) for time series modeling. The linear

predictive technique estimates the properties of a signal by

modeling a sample as a linear combination of past samples

and minimizing some form of the error between the actual and

predicted samples. The most common implementations of the

linear predictive technique have been the autocorrelation

and covariance methods (Maktoul, 1975; Markel & Gray, 1976,

chap. 9; Rabiner & Schafer, 1978).
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Lattice Method of Linear Prediction

The linear prediction technique may also be implemented

as a lattice algorithm, which is recursive in time and

order. A lattice structure has several advantages over the

autocorrelation and covariance methods. Most importantly,

the physical structure of the lattice filter is composed of

cascaded filter stages; a pth-order lattice filter may be

decomposed into all filters of up to and including pth-

order. The pth-order lattice structure simultaneously

generates outputs of all lesser order filters. Lattice

models are naturally related to physical models such as the

scattering and propagation of waves in a stratified medium

(Friedlander, 1980). The PARCOR coefficients of the lattice

are also related to the reflections between layers of the

medium being modeled. This type of physical meaning is not

apparent for the polynomial filter coefficients, , whichI

are obtained from the PARCOR coefficients by a nonlinear

recursion. The lattice model is directly applicable to the

study of transmission theory, seismic signal processing, and

underwater sound propagation as well as speech

communication. For instance, geophysicists have used ladder

structures in their study of structural features of the

earth's subsurface (Burg, 1967; Robinson & Treitel, 1980;

Wiggins & Robinson, 1965; Ulrych & Bishop, 1975). The

lattice method of linear prediction was first presented by

I"I



Page 12

Itakura & Saito (1971) and is well known in the speech field

as an analysis tool (Atal & Hanauer, 1971; Flanagan, 1972;

Makhoul, 1975). Also, hardware implementations of lattice

filters have been successfully marketed as effective

synthesis devices for the compression and transmission of

speech signals. The Texas Instruments' "Speak & Spell" game

is an example of this technology. Researchers in the speech

field have used the lattice based on an acoustic tube model

of the vocal tract (Markel & Gray 1976, chap. 4; Wakita,

1973a, 1973b; Wakita & Gray 1975). In addition to the

obvious physical significance of the lattice structure,

other advantageous features of the lattice method of linear

prediction include a recursive-in-time implementation

(rather than block processing), faster convergence,

insensitivity to eigenvalue spread, better numerical

behavior, robustness, and insensitivity to roundoff noise

(Friedlander, 1982a; Lee, Morf & Friedlander, 1981;

Makhoul, 1978; Markel & Gray, 1976, chap. 9). Lattice

filters have found application in the fields of noise k

cancelling, channel equalization, seismic signal processing,

speech processing, system identification, frequency

tracking, spectral estimation, and spectrum prewhitening

(Friedlander, 1982b; Hodgkiss & Alexandrou, 1983; Hodgkiss

& Presley, 1981, 1982; Lee, Morf, & Friedlander, 1981;

Satorius & Alexander, 1979; Satorius & Pack, 1981;

Satorius & Shensa, 1980a).
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The least squares lattice. The least squares lattice

recursions were first obtained by an algebraic approach

(Morf, Lee, Nickolls & Vieira, 1977; Morf, Vieira, & Lee,

1977). The least squares lattice (LSL) structures proposed

by Morf et. al are more efficient numerically than the

gradient lattice algorithms (Griffiths, 1975, 1977, 1978),

requiring only O(p) operations per time update, where p is

the order of the filter. The least squares lattice

structures are known for their good stability properties,

rapid startup, excellent convergence properties and fast

parameter tracking capabilities (Hodgkiss & Presley, 1981;

Lee, 1980; Lee, Morf, & Friedlander, 1981; Satorius &

Pack, 1981; Satorius & Shensa, 1980b). These advantages

are a direct result of two lattice parameters which acc,.unt

for the algorithmic differences between the gradient LSL

formulations: an exponential weighting parameter,

CSL), and a Gaussian likelihood step size parameter,

Yi-2 (n-i). These parameters are discussed in Chapter IV.

Certain assumptions must be made about the behavior of the

waveform outside the time interval of observation. The

lattice structure used in this research prewindows the data,

i.e., it assumes that z(n)=0 for all n<O. The LSL

Algorithms deveolped by Morf et. al were adapted for complex

data by Hodgkiss and Presley (1981, 1982) and then

4 programmed in FORTRAN by Alexandrou and Hodgkiss (Note 1).

A section of this program was incorporated into this
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author's computer simulation for the inverse filter. The

inverse filter is discussed in Chapter IV.

'A

:4

4
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CHAPTER II

VOWEL IDENTIFICATION

The concept of formant space clustering is the result

of work done at Bell Laboratories during the years

1947-1951. A study of sustained vowels was undertaken by

G. E. Peterson, H. L. Barney, R. K. Potter, J. C. Steinberg

and others to investigate the relationship between spoken

and perceived vowels and their acoustical correlates

(Barney, Note 2; Peterson & Barney, 1952; Potter &

Steinberg, 1950). The vowels used were the ten English

vowels in a consonant-vowel-consonant (CVC) context with /h/

as the first consonant. For the Bell Laboratories studies,

a total of 76 speakers including 33 men, 28 women, and 15

children each recorded two, lists of 10 words (each word

contained a vowel in the context /hd/). The vowels and

corresponding symbols and words adapted from those of the

International Phonetic Alphabet (IPA) are presented in

Table 1. The majority of the male speakers spoke General

American English. The words were recorded and played to a

group of 70 listeners who identified the vowel in each of

the words. The vowel portion of each CVC utterance was also

analyzed with a sound spectrograph to determine the

frequency positions of the first three formants. Since the

results of the listening tests showed the effects of the

diverse dialectal backgrounds of the listeners, a sub-group
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Table 1

Vowel Symbols and Corresponding CVC Test Utterances

Used in the Bell Laboratories Study

Symbol0  Data points CVC syllable Utterance

/i/ 65 /hid/ heed

/1/ 51 /hid/ hid

/e/ 35 /hEd/ head

// 56 /had/ had

/a/ 37 /had/ hod

45 /h.?d/ hawed

/U/ 55 /hUd/ hood

/u/ 60 /hud/ who'd

/A/ 37 /hAd/ hud

65 /h 3'd/ heard

Symbols are those of the International Phonetic Alphabet.
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of 26 observers with similar characteristics was chosen P

(Barney, Note 2). Of the 1520 vowels presented, 1203 were

identified unanimously by the 26 observers.

When the first and second formants of the vowels are

plotted against each other, the vowels appear in essentially

the same positions as they do in the vowel quadrilateral

(Peterson & Barney, 1952). Vowels may be separated on the

basis of their locations in the space defined by the first

two formants, except for the vowel /3/, identified by its

third formant, which is lower than that of the other vowels

(Potter & Steinberg, 1950). The distribution is continuous

in the F1-F2 plane in going from vowel to vowel; the

overlap between )wels is characteristic of the differences

in the way various individuals articulate and pronounce the

vowels (Peterson & Barney, 1952). The distributions for

each vowel tend to be elongated, elliptical areas along

lines which pass through the origin, indicating that

although formant ratios are not exactly constant, they do
tend to be helpful for the identification of some vowels

(Potter & Steinberg, 1950).

Analysis of the Formant Frequency Data

Fundamental and formant frequency data for these 1203

utterances were obtained through the courtesy of Bell

Laboratories Archives for use in this study. Because Potter
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and Steinberg (1950) determined that formant frequency

positions for a man's voice differed from those of a woman's

for the same vowel, the present author has restricted this

study to data from male utterances to control for

fundamental frequency. This author has plotted the vowel

data used for this study in the manner of Peterson and

Barney. Data for four of the utterances are eliminated from

the study because they occurred outside the limits of three

standard deviations for a particular vowel. The remaining

number of data points per vowel are listed in Table 1. The

base 10 logarithms of formant frequencies are normalized so

that the frequency range of the entire set of data falls

within the interval [0,1]. Table 2 presents the ranges of

normalized formant frequencies. The widest range is spanned

by F2, the second widest by Fl. This is consistent with the

recognition of F2 in the literature (Potter, Kopp, & Kopp,

1966, pp. 74-75) as a primary feature of voiced speech,

especially the movement of F2 in identifying dipthongs (as

in "how", "hoe", "hay", "high", "hoist").

Graphical Analysis

Figures 2 and 3 present the vowel clusters for all ten

vowels in the Fl-F2 and FI-F3 planes. The same clusters are

presented separately by vowel in Figures 4-13 for the FI-F2

plane, and the cluster for the vowel /3/ in the F1-F3 plane

is shown in Figure 14. Each data point appears as the
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Table 2

Normalized and Un-normalized Ranges for
Formant Frequencies and PARCOR Coefficients

Cluster variable Minimum Maximum

Un-normalized values

Formant frequencies (1-3) 190 3400

PARCOR coefficients (1-6) -0.9674 0.9971

Values normalized to [0,1]

Formant frequencies

log F1  0.0000 0.5235

log F2  0.3747 0.9201

log F3  0.6924 1.000

PARCOR coefficients

KI 0.0000 0.6484

K2 0.3020 1.000

K3 0.0320 0.4346

K4 0.3071 0.9425

K5 0.2027 0.6200

K6 0.8858 0. 9303
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symbol for the particular vowel which it represerits. The

symbols are somewhat modified versions of those of the

International Phonetic Alphabet, due to the limited

availability of IPA symbols for plotting purposes. The

results mentioned previously as reported by Peterson,

Barney, Potter, and Steinberg are reproduced and verified by

the present author. Each vowel cluster on the formant plots

is enclosed by a solid line. The exact outline of each

cluster is arbitrary; the outlines are intended to indicate

a general cluster shape for the purpose of evaluating

separability in a graphical, qualitative manner.

Distance measures

Selected quantitative distance measures and cluster
sizes are computed for the formant frequencies in two

(F1,F2) and three (FI,F2,F3) dimensions (see Appendix A).

Although the actual distance measures (Tou & Gonzales, 1974,

p. 77) used are arbitrary, a set of dimensionless

measurements is necessary to allow comparison of the cluster

sizes and vowel separability in the formant space with that

in the PARCOR space. The average intracluster distance for

each cluster is computed as the average Euclidean distance

between each of the data points in the cluster (normalized

log frequency) and the centroid of the cluster. The

intercluster distance is computed as the Euclidean distance

between the centroids of selected adjacent vowel cluster
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pairs. Ideally, the average intracluster distances should

be minimized for maximum cluster compactness and the

intercluster distances should be maximized for maximum

cluster separability. The average intracluster distances

for each cluster and the intercluster distances for selected

adjacent vowel pairs are tabulated in Tables 3 and 4,

respectively. The average intracluster distance, a measure

of cluster compactness, for each vowel is minimum in two

(Fl,F2) dimensions, whereas the intercluster distance, a

measure of vowel separation, is maximum in three (F1,F2,F3)

dimensions. The ratio of the sum of average intracluster

distances to intercluster distance for each of the adjacent-

vowel pairs is also computed in two and three dimensions,

(presented in Table 5). This measurement is meaningful when

compared with values computed for the PARCOR coefficients

(Chapter 5). The distance measures substantiate the results

of the graphical analysis: sufficiency of the Fl-F2 plot to

identify the first nine vowels and the FI-F3 plot to

separate them from the tenth vowel, /3'/.

K.I

I.. .1
I "1

- - - - --~ a -. ~-.-- ..2~....]
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Table 3

Average Intracluster Distances for
Formant Frequency and PARCOR Coefficient Clusters

Cluster dimension

Vowel F(1,2) F(1,2,3) K(1,2) K(1,2,3) K(1-6)

//0.0456 0.0514 0.1303 0.1418 0.1623

/1/ 0.0424 0.0464 0.0848 0.0926 0.1069

A/0.0337 0.0375 0.0627 0.0715 0.0834

0.0312 0.0360 0.0583 0.0699 0.0830

//0.0263 0.0401 0.0155 0.0650 0.1027

0.0496 0.0577 0.0116 0.0408 0.0920

//0.0461 0.0533 0.0235 0.0393 0.0737

//0.0775 0.0815 0.0299 0.0463 0.0797

/!0.0365 0.0443 0.0264 0.0527 0.0774

//0.0426 0.0504 0.0448 0.0373 0.0567
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Table 4

Intercluster Distances for Adjacent-Vowel Pairs of
Formant Frequency and PARCOR Coefficient Clusters

Cluster Dimension

Vowel pair F(1,2) F(1,2,3) K(1,2) K(1,2,3) K(1-6)

i-I 0.1408 0.1482 0.1828 0.1832 0.2510

0.1143 0.1147 0.0809 0.0917 0.1083

0.0852 0.0861 0.0968 0.1067 0.1142

0.1388 0.1824 0.1288 0.1842 0.2921

0.1616 0.1619 0.0676 0.'207 0.1372

a-A 0.0648 0.0653 0.0428 0.0577 0.0625

a-I 0.1598 0.2021 0.0881 0.2291 0.3407

2-U 0.1179 0.1200 0.0539 0.0572 0.1071

9-A 0.1537 0.1537 0.0884 0.1075 0.1364

U-u 0.1376 0.1377 0.0229 0.0542 0.0774

U-1 0.1060 0.1400 0.1155 0.1479 0.2502

0.0951 0.1495 0.0590 0.1826 0.2936

h.
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Table 5

Ratio of the Sum of Average Intracluster Distances to
Intercluster Distance for Adjacent-Vowel Pairs of
Formant Frequency and PARCOR Coefficient Clusters

Cluster Dimension

Vowel pair F(1,2) F(1,2,3) K(1,2) K(1,2,3) K(1-6)

i-I 0.6249 0.6599 1.176 1.279 1.072

I-C 0.6661 0.7322 1.824 1.789 1.757

E- 0.7624 0.8542 1.251 1.326 1.457

ae- 0.5312 0.4739 0.7431 0.6223 0.4783

Q-9 0.4694 0.6038 0.4005 0.8761 1.419

U-A 0.9695 1.293 0.9804 2.040 2.879

Q-3T 0.4309 0.4479 0.5996 0.4788 0.4679

9-U 0.8118 0.9247 0.6503 1.401 1.546

)-A 0.5600 0.6637 0.4300 0.8688 1.241

U-u 0.8982 0.9793 1.780 1.579 1.980

U-3 0.8369 0.7408 0.5264 0.5685 0.5209

A-3( 0.8311 0.6338 1.081 0.5336 0.4565

'1
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CHAPTER III

GENERATION OF SYNTHESIZED VOWEL-LIKE SOUNDS

It was desired to reproduce the data measured at Bell

Laboratories as accurately as possible. The speech spectrum

may be adequately represented by frequency information below

4000 Hz. (Denes & Pinson, 1963, p. 140) which includes the

range of the first three formant frequencies for male

speakers. Since each formant must be represented by a

complex conjugate pole pair, a six-pole filter is a

sufficient representation of a vowel. A sampling frequency

of 8000 Hz. is chosen, following Rabiner and Schafer (1978,

chap. 3).

Digital Models for the Vocal Tract

Rabiner and Schafer (1978, chap. 3) represent the vocal

tract as a recursive IIR digital filter with transfer

function

1 1 Z(z)
H(z)=-.. ii- a z-7 A(z) V(z)

where p is the order of the filter. For stability, the z-

plane poles corresponding to the roots of this equation must

lie inside the unit circle. The corresponding output AR

speech process, z(n), is described by the equation:

Iq

".
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z(n)=a I z(n-l)+a 2 z(n-2)+ . . . +apz(n-p)+v(n)

aiz(n-j)+v(n) (2)
j-I

Each formant of a vowel is related to a complex conjugate

pair of zeros of the polynomial in z-1, A(z):

. -ZSFj T +ji2 7rF i T i

zp, zi = e e+ 2 j

where Fj is the jth formant frequency, &FI is the

bandwidth of the jth formant, and T is the sampling period

(Rabiner & Schafer, 1978). So that the filter may be

realized recursively, the polynomial coefficients are

determined by evaluating the denominator of H(z), where

H(z)= (l z z" )

S(l-zi z'j'-I
0

and equating the denominator to A(z)=l- aj il .

Physical Model of Speech Production

The physical mechanism for speech production consists

of the lungs, bronchi, trachea, larynx, pharynx, and nasal

and oral cavities. The larynx, which includes the vocal

folds, is the principal structure for voiced speech.

Complex tones are produced when short duration air pulses

produced at the glottis (the space between the vocal folds)

excite the supralaryngeal portion of the vocal tract.
q Alternately, a noise source may be produced by constricting
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the vocal tract (i.e., at the vocal folds, lips, tongue, or

soft palate), causing the airstceam to become turbulent.

For unvoiced speech, the noise source is produced without

the vibration of the vocal folds. Here, too, the vocal

tract acts as a resonant cavity to shape the resultant

sound. Figure 15 (from Flanagan, 1972, p. 24) shows the

physical system in terms of the possible mechanisms for

sound generation and resonation.

The resonant frequencies of the lossless tube model of

the vocal tract have very narrow bandwidths. Actually, the

vocal tract is not lossless. The cross section of the vocal

tract varies continuously over the length, and energy losses

occur as a result of result of viscous friction between air

and the walls of the tube, heat conduction through the tube

walls, and vibration of the tube walls as well as from

losses at the glottis (vocal folds) and lips. These losses

are frequency-dependent, and their combined effect is to

change the positions of the vocal tract resonances and

broaden the bandwidths of those resonances. (Rabiner &

Schafer, 1978, p. 72).

Modeling of Formant Bandwidths

The bandwidths of the Peterson and Barney data were

measured by B,,ert (1953) and again by Dunn (1961). Bogert
4 - concluded that bandwidths of formants are invariant and
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independent of vowel. Dunn also questioned whether changes

in bandwidth from vowel to vowel are critical or even

necessary for correct identification of synthetic speech.

Neither the bandwidth data measured by Dunn nor that

measured by Bogert were available for use in this study.

The required bandwidth values for each formant frequency are

supplied by averages over all ten vowels (LF1=52.0,

&F2 =66.0, &F3 =120.0) from sine wave bandwidths for

synthesized vowels determined by Dunn with his electrical

vocal tract.

A series of experiments conducted by this author

describes the effects of bandwidth changes on the PARCOR

coefficients of a single formant (two-pole) system. For a

series of single formant frequency systems with formants

incremented over the range 250-3500 Hz., when the bandwidth

of the formant is incremented from 10-200 Hz., the range

(averaged over the formant frequency experiments) over which

Kl varies is .0057 with a standard deviation of .0034. The

average range over which K2 varies is .0115 with a standard

deviation of .1361. Likewise, for a series of constant-

bandwidth single-formant frequencies, when the formants are

incremented over the range 250-3500 Hz. for each bandwidth

in the range 10-200 Hz. The range (averaged over the

bandwidth experiments) over which K1 varies is 1.900 with a
s;standard deviation of .0040; the average range of K2 is

4q
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.0061 with a standard deviation of .0255. In comparing the

ranges of KI and K2, it is observed that the effect of

formant frequency variations on the PARCOR coefficients,

especially K1 (which has been previously determined by

Tohkura & Itakura, 1979, to be sensitive to variations in

pole placement) is much more pronounced than the effect of

bandwidth variations, which are practically negligible.

Incidentally, it is noted that as AF is increased for any

F), K2 decreases. As Fj is increased for any,&Fj, Kl

increases.

Modeling of Vocal Tract Excitation

Modeling of the vocal tract excitation function

presents a problem with respect to the generation of the

synthesized vowel-like sounds. The primary objective in

reproducing the Bell Laboratories data is to accurately

reproduce the formant frequencies measured by Peterson and

Barney. Input to the vowel generation prefilter must be

white in order to obtain an AR process as the output.

Ideally, the easiest way to exactly specify the frequency

peaks (formants) of the output speech spectrum is to specify

them as the peaks of the transfer function of the filter,

using an input signal with a constant (flat) frequency

spectrum. This requirement of a flat spectrum is satisfied

by two types of signals; white noise and a periodic

(deterministic) impulse train (corresponding to unvoiced and
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voiced excitation, respectively). Although the frequency

spectrum of an impulse train is flat, modeling of the

excitation as an impulse train is less than desirable in

terms of the accuracy with which the harmonics of the

impulse frequency correspond to the desired frequency peaks

(formants) of the output signal.

The speech spectrum for a vowel should theoretically

have formant frequencies which are integer multiples of the

fundamental frequency. However, the fundamental and formant

frequencies measured by Peterson and Barney do not exhibit

this tendency for several reasons. Primarily, the technique

used by Peterson and Barney to measure formant frequency

used a weighted average of the frequency components of the

spectral peak (Potter & Steinberg, 1950); in addition,

factors such as perturbation in actual fundamental frequency

and difficulty in interpreting spectrograms to within a few

Hertz, as well as measurement and roundoff error probably

contributed to the lack of relationship between measured

fundamentals and their formants. Since the measured

fundamentals are fairly low in frequency, their harmonics

are sufficiently far apart as to cause the reproduced

formants to be much different from the measured (desired)

formants.

As stated earlier, the primary objective in the

generation of the data is to recreate the measured formants.

9i
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Therefore, the fundamental frequency data are disregarded,

and the input excitation is chosen to be a white noise

sequence with zero mean and standard deviation equal to one.

This may be likened to an unvoiced input, as though

whispered vowels are being generated. Although the power

spectral density of the excitation function of a whispered

vowel is not exactly white, the approximation of the input

as white noise is no less accurate from a signal processing

standpoint than approximating the glottal wave (voiced

input) with an impulse train.

The input excitation problem is illustrated in

Figure 16. A voiced input is shown in Figure 16(b) as a

periodic, deterministic impulse train of frequency fo with

harmonics fn, where fn=nf0 . An unvoiced input is modeled in

Figure 16(d) as white noise, with frequency components at

fn, (limited by the sampling frequency Fs), where fn=n/Fs.

Comparing the output spectra of Figure 16(c) and

Figure 16(e), the reproduced formants Fn are closer to the

desired formants Fn , for the noise input of Figure 16(d)

than for the impulse input of Figure 16(b).

Each synthesized vowel-like utterance is generated as a

sixth-order AR time series from the three formant

frequencies supplied by the Bell Laboratories data (Barney,

2q 1952). A Gaussian white noise process, v(n), with ov=1.0

is used as the excitation function. Bandwidths for Fl, F2,

4
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and F3 are held constant for all utterances at the values

52.0 Hz., 66.0 Hz., and 120.0 Hz., respectively. The

process is generated for 1000 samples. These samples are

then fed into the sixth-order inverse whitening filter (see

Chapter IV) to obtain the PARCOR coefficients which are used

as pattern recognition parameters for vowel identification.

A system block diagram of the computer simulation is shown

in Figure 17.

U

4"
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CHAPTER IV

INVERSE FILTER

The forward PARCOR coefficients 0(n),

i=l, 2, . . . 6 corresponding to each utterance are

obtained by passing 1000 of the synthesized vowel-like

samples, z(n), through a sixth-order inverse (whitening)
e

filter. The six final forward PARCOR coefficients Ki(1000)

are used in Chapter 5 as pattern recognition parameters for

the vowel utterances.

The Linear Prediction Problem

Rabiner and Schafer (1972, chap. 8) present the linear

prediction problem; for the digital vocal tract model of

equation 1, the speech samples, z(n), are related to the

white input samples, v(n), by equation 2. A linear

predictor with predictor coefficients, aj, is defined as
P

z(n)= a jz(n-j). The system function for this pth-order
P

linear predictor is P(z)= a zJ . The prediction error,

e(n), is the difference between the speech sample, z(n), and

the linearly predicted one, z(n):
P

e(n)=z(n)-^(.n)=z(n)- Z ajz(n-j). The error, e(n), is the

output of a system with transfer function

V1 P
- = A(z) = 1- X aE -J
H(Z) j:I

which recovers the white input (e(n)=^(n)) by removing the
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correlation between samples of z(n). The error, e(n), will

approach v(n) as aj approach aj and A(z) will be the inverse

filter for H(z). The linear prediction problem then is one
/%

of finding the A(z) which minimizes the square of the

exponentially weighted forward prediction error given by
N 2

Ep(N)= Z (1-acLSL lep(n)2 (Hodgkiss & Presley, 1981).
n!O

This leads to a set of linear equations called the normal

equations. Complete algebraic derivations of the least

squares lattice equations (from which this was adapted) are

found in Lee (1980) and Pack and Satorius (Note 4).

The Least Squares Lattice

The solution of the normal equations is dependent on

the efficient inversion of a pxp covariance matrix (Lee,

1980). Several solution algorithms are discussed by Morf,

Lee, Nickolls, and Vieira (1977). The Levinson (1947)

algorithm is an efficient least squares simultaneous

solution to the normal equations requiring only O(p2 )

computations per time update (where p is the order of the

filter) for a stationary process. A natural implementation

of Levinson's algorithm, the lattice structure (as realized

* by Itakura and Saito, 1971), provides an extension to the

non-stationary case. Lee (1980) and Pack and Satorius (Note

4) present Levinson's recursion clearly. A class of fast

* exact least squares algorithms which require only O(p)

computations per time update are discussed in the literature
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by Morf, Dickenson, Kailath, and Vieira (1977), and Morf,

Lee, Nickolls, and Vieira (1977). An exact time update

recursion in terms of lattice variables only has been

developed and tested by Lee (1980), Morf and Lee (1978),

Morf, Lee, Nickolls, and Vieira (1977), and Morf, Vieira,

and Lee, (1977).

Lattice Structure

A feed forward (MA) lattice structure (Figure 18) is

the realization of Levinson's algorithm for the computation

of the optimal linear predictor. The lattice is composed of

a cascade of p individual lattice sections, corresponding to

the stages (order) of the algorithm, i=1,2, . . . p. The

variable in the lower path, e i (n), is the forward error

between the input, z(n), and the least squares (linearly

predicted) estimate of z(n), S(n), based on a linear
P

combination of past inputs: T(n)=Z aiz(n-j). Likewise,
j:I

the backward prediction error, ri (n), propagates backward

along the upper path. The variables represented by the

cross bars of the lattice are the forward and backward

partial correlation or PARCOR coefficients which arise

naturally as intermediate entities in the solution of the

e r
Levinson algorithm. For the least squares lattice, K1$K[

and 1K ,K1 j<1 for i=1,2, . . p.

I4
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Lattice Variables

Appendix B presents the least squares complex adaptive

lattice variables and equations as adapted from Lee, Morf,

and Friedlander (1981) for complex data by Hodgkiss and

Presley (1982). The software supplied by Alexandrou and

Hodgkiss (Note 1) for the computer simulation is based on

these equations.

Fade factor. The fade factor, (I-aCLSL), applies an

exponential weighting on the data by weighting recent errors

more heavily than those in the distant past. For this study

the value of aCLSL was chosen to be .0001, although the

choice is not critical here as the time series are all

stationary. Bounded by [0,1], (1 -aCLSL) is usually close to

1; the inverse of aCLSL is approximately the memory of the

algorithm (Pack & Satorius, Note 4). The value of aCLSL may

be selected to satisfy a misadjustment criterion (Hodgkiss &

Presley, 1982).

Likelihood variable. A major difference between

gradient lattice developed by Griffiths (1975, 1977) and LSL

algorithms is the Gaussian likelihood parameter, (n-1),

which replaces the constant step size of the gradient

lattice and is responsible for the fast tracking

capabilities of the LSL. For likely samples (the lower

bound of Yi-2 (n-l)=0 is reached for aCLSL=0), the step size
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is small and constant, roughly on the order of magnitude of

the "optimal" gradient step size. For unlikely samples (the

upper bound of Xi-2 (n-l) = l is reached for aCLSL=I),

,i_-2 (n-1) will approach unity; the gain, l/(l-yi 2 (n-l)),

is very large, causing the lattice parameters to change

quickly to adapt to sudden changes in the input data

U (Hodgkiss & Presley, 1981). The values of both aCLSL and

,i_2 (n-1) will become critical if the study is extended such

that we proceed to examine the time-varying behavior of the

PARCOR coefficients for a nonstationary input time series.

Partial correlation (PARCOR) coefficients. The

variable Ai(n) is known as the ith-order partial

autocorrelation between z(n) and z(n-i-l), and is defined as

the correlation betweeen these two samples after removing

their mutual linear dependence on intervening samples. The

e rpartial correlation (PARCOR) coefficients Ke and K1 are the

partial autocorrelations normalized by E1- (n) and

nE1.._, ( n-I ).

Performance Measures for the Lattice

Various performance measures may be employed to

evaluate the whitening properties of the lattice and the

accuracy with which the predictor coefficients, a, identify

the transfer function of the prefilter, assuming a white

input to the prefilter. Two example cases are presented in
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Table 6, for the vowels /i/ and /u/. The pth-stage mean

square error (Hodgkiss & Presley, 1982), E[lep(n) 1, may be

plotted at each time n. As a quantitative measure of

convergence time, the 10% settling time may be determined as

the time at which the mean square error comes within 10% of

the theoretical steady state value. The mean square error

for Example 1 is plotted in Figure 19. The final (pth-

stage) error power (Hodgkiss & Presley, 1982) after

convergence, E[Ie (n)12]=E[I^V(n) 12]=o-2 , will be an estimate

of the variance of the prefilter input signal,

E[1v(n) 12 ]=a . For zero-mean Gaussian white noise input

withea. -- , should approach one for a true whitening

filter. The misadjustment, Ie- 2 -cav 2 / 2 I, is also a popular

performance measure. The misadjustment after 1000 samples

is 8% and 9% for. Example 1 and Example 2, respectively.

When the filter transfer functions are realized from

the filter coefficients, the plot of the transfer function

is a good qualitative performance measure. Inverted, the

magnitude of the transfer function of the lattice filter,

I(z) I, is an approximation of the prefilter (vocal tract

model) transfer function, Il/A(z)I. This series of transfer

functions is presented in Figure 20 for Example 1 and in

Figure 21 for Example 2.

The power spectral density may also be used as another

qualitative performance measure. For a prefilter input
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Table 6
Selected Filter Parameters for
Two Example Vowel Utterances

J

1 2 3 4 5 6

Example 1, vowel /i/

F 244 2300 2780 .........

F 52 66 120 .........

a -0.3717 0.3330 -1.592 0.3281 -0.2648 0.8295

a (N) -0.3604 0.3449 -1.585 0.3332 -0.2635 0.8145

K (N) -0.2498 0.0314 -0.8441 0.1920 0.0860 0.8125

Kj 0.3653 0.5084 0.0628 0.5902 0.5362 0.9060

Fnlmean square error E le6 (1000) 2 ] =0.9178 =.3723 dB

10% settling time = 757

Example 2, vowel /u/

F 340 950 2240 ---....

F 52 66 120 --- --- ---

a -2.964 4.337 -4.541 3.978 -2.558 0.8295

a (N) -2.919 4.224 -4.381 3.817 -2.459 0.8077

K (N) -0.9255 0.8691 -0.6304 0.4167 -0.2982 0.8006

Kj 0.0214 0. 9349 0.1716 0.7046 0.3407 0.9000

Final mean square error E[je 6 (1000)j 2 ]  .9119= .4003 dB

10% settling time = 766

HI
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which is zero-mean Gaussian white noise, the power spectral

density of the prefilter input is proportional to c"V , a

constant: Pv(z)=10 log Ccv 2 . The prefilter output (lattice

input) power spectral density is given by Papoulis (1981) as

Ca2
PZ (z)= 10 log IA(z)12

An estimate of the prefilter input power spectral density is

the power spectral density of the lattice output

P (z)=10 log Pz (z) zIt should be flat (constant) for

optimal whitening. The power spectral density series for

the two examples are shown in Figures 22 and 23. An

estimate of the prefilter output power spectral density is

given by Griffiths (1975) as
2

C ae
Pz(z)-1 log (z2

IA(z)I

I"I
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CHAPTER 5

RESULTS

For each synthesized utterance, the least squares

lattice computes a set of PARCOR coefficients at each time

update. The six forward PARCOR coefficients at the last

time update Ke(N)=Ke(1000) obtained as the output of the

lattice, are the classification parameters in this study.

Because the PARCOR coefficients span the range [-0.9674,

0.9971], they are normalized to span the interval [0,1] to

facillitate comparisons of distance measures and cluster

sizes between formant clusters and PARCOR clusters.

Henceforth, the notation KI, K2, . . . K6 will denote

normalized K?(1000); i=l, 2, . . . 6. Table 2 lists the

normalized ranges of all the PARCOR coefficients.

Analysis of the PARCOR Coefficient Data

The PARCOR coefficients for all of the synthesized

utterances are analyzed both graphically and quantitatively

in the same manner as the formant frequencies were analyzed.

Distance measures are computed in two (Kl,K2), three

* (KI,K2,K3), and six (Kl-K6) dimensions in a manner analogous

to the computation of the two (Fl,F2) and three (Fl,F2,F3)

dimensional formant frequency distance measures. The data

for the synthesized vowel-like sounds are shown in the

KI-K2, KI-K3, KI-K4, KI-K5, and KI-K6 planes in
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Figures 24-28.

Graphical Representation

From a graphical analysis, vowels are most separable in

the KI-K2 plane, except for the vowel /5/, for which K3 is

quite low relative to that of the other vowels and which may

be differentiated by its location in the three-dimensional

space defined by Kl,K2 and K3. Figures 29-38 present the

synthesized vowel-like sounds, singly, in the Kl-K2 plane.

The vowel /3/ in the Kl-K3 plane is shown in Figure 39.

Graphically, none of the other PARCOR coefficients further

separates the vowels. As for the formant space vowel

clusters, the precise vowel cluster areas enclosed on the

PARCOR plots are arbitrary, intended to indicate a general

cluster shape for the purpose of evaluating separability in

a graphical, qualitative manner. The range of K2 is

greatest, followed by that of Kl (as for the formant

frequencies). KI includes the highest value of PARCOR

coefficient; K2 includes the lowest. The range of K6 is

the smallest of the PARCOR ranges. The ranges spanned by

the various PARCOR coefficients are in accordance with the

*I results of Tohkura and Itakura (1979) who noted that the

spectral sensitivity for the first PARCOR is often quite

high, and its distribution is wider than that of the higher

order PARCOR coefficients.
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Distance Measures

The same selected quantitative measures of the cluster

sizes and relationships which are computed for formant

frequency clusters are also computed in two, three, and six

dimensions for the PARCOR coefficient clusters. Table 3

(p. 35) presents the average intracluster distance for each

vowel, for two, three, and six-dimensional cases. As for

the formant frequencies, intracluster distances are minimum

(indicating cluster compactness) for every vowel in two

dimensions. Table 4 (p. 36) presents the intercluster

distances for selected adjacent vowel pairs for the two,

three, and six-dimensional cases. As for the formant

frequencies, intercluster distances are maximum (indicating

separability) in the largest number of dimensions, which,

for the PARCOR coefficients is the six-dimensional case.

The efficiency with which the PARCOR coefficients

represent the vowel clusters may be compared to that

exhibited by the formant friquencies by studying Tables 3

and 4 (pp. 35-36). The average intracluster distance

(Table 3) should be minimized and the intercluster distances

(Table 4) should be maximized.

As a combined measure of compactness and separability,

The ratio of the sum of average intracluster distances to

intercluster distance for adjacent-vowel pairs is computed
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for formants and PARCOR coeffients in two, three, and six

dimensions. This parameter should be minimized for clusters

which are both separable and compact; it is greater than

one for clusters which are less so. Quantitatively,

analysis of this parameter (Table 5, p. 37) indicates a

smaller ratio for PARCOR coefficients than for formants for

five of the twelve adjacent-vowel pairs. In other words,

the PARCOR coefficient clusters are roughly equivalent the

the formant frequency clusters in terms of their compactness

and separability. The actual number of dimensions in which

the smaller ratios are obtained varies over the vowel pairs.

The use of this ratio must be coupled with a qualitative

assessment of the vowel clusters. For instance, although

the vowels /i/ and /I/ in the Kl-K2 plane in Figures 29 and

30 are both widely dispersed, inspection of Figure 24

reveals that the vowel-like sounds may be separated in the

K1-K2 plane. The combined ratio for the pair i-I, however,

suffers because the coefficients are so widely dispersed.

Inspection of the analogous figures (2,4, and 5) for the

formant frequencies suggests that the formant space

representation is about equivalent to the PARCOR coefficient

*I representation, yet the combined ratio in the formant space

is smaller due to the more compact nature of the clusters.

The elliptical shapes of the clusters also contribute to the

q inaccuracy of this type of measurement, since it is more

suited to clusters which are symmetric.
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An item by item comparison between the columns in each

Table is meaningful, specifically the two-dimensional

columns in Table 3 and the F(1,2,3) and K(1-6) columns in

Table 4. This method of evaluating the two systems of

classifying the vowels is more meaningful and informative in

conjunction with a graphical assessment since the results

are not consistently in favor of one system or the other.

The vowel clusters are not consistently more compact or well

separated in one domain than in the other. In other words,

the PARCOR coefficient representation of the vowels is about

equivalent to the formant representation.

It is possible that taking the logarithm of the PARCOR

coefficients would cause them to cluster more compactly,

since the clusters have an elliptical shape. This is not

done, however, because there is no physical justification

for the transformation (such as the nonlinearity of the ear

in the case of the formant frequencies).

Various distance measures have been employed by

researchers in the speech field to assess the similarity

between two utterances. These distance measures are

*9 commonly computed from the linear predictor coefficients,

ai , (Atal & Rabiner, 1976; Gray & Markel, 1976; Levinson,

Rabiner, Rosenberg & Wilpon, 1979; Tribolet,Rabiner, &

Sondhi, 1979) The physical significance of the PARCOR

coefficients lends credibility to their use as an
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alternative vehicle for assessing similarity between

utterances. A quantitative comparison between the various

measurements is warranted, based on the results presented

here which indicate that the PARCOR coefficients may be

equivalent to or better than one or more of the more widely

used feature parameters.

P.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

It was shown by Potter and Steinberg (1950) and by

Peterson and Barney (1952) that the vowel formant

frequencies F1 and F2 tend to cluster by vowel when plotted
for different speakers. Formant frequency data measured by

these researchers for utterances by male speakers were

obtained and analyzed by this author quantitatively as well

as graphically. The results obtained by the Bell

Laboratories researchers (Peterson & Barney, 1952; Potter &

Steinberg, 1950) are verified; the first nine vowel

clusters are defined in the space defined by F1 and F2,

whereas the third formant is necessary for identification of

the tenth vowel, /3'/. The average intracluster distance for

each vowel cluster yields smaller values for each vowel when

computed in two dimensions rather than three, indicating

that the clusters are most compact in two dimensions.

Intercluster distances between adjacent vowel pairs were

computed as a measure of vowel separability and found to be

maximum in three dimensions for all of the pairs.

Each of the utterances was then reproduced from the

formant frequencies as an autoregressive time series by a

six-pole IIR recursive digital filter. These time series

A
were then inverse filtered with a six-zero complex adaptive
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lattice filter adapted from Alexandrou & Hodgkiss (Note 1)

which yielded a whitened output signal. The partial

correlation (PARCOR) coefficients from this lattice filter

were shown to cluster by vowel in the space defined by these

coefficients.

Graphically, the first two coefficients, K1 and K2, are

sufficient to identify the first nine vowels, whereas the

third PARCOR coefficient, K3, is necessary to distinguish

the tenth vowel, /1/, from the other nine. The results of a

numerical analysis of the PARCOR coefficients were analagous

to those found for the formant frequencies. From

calculations of average intracluster distance for each

vowel, it was determined that the clusters are most compact

in two dimensions (Kl,K2). Calculations of intercluster

distance between adjacent-vowel pairs show maximum cluster

separation in the largest number of dimensions (six). The

ratio of the sum of intracluster distances to intercluster

distance for each of the adjacent-vowel pairs indicates that

the PARCOR coefficient representation is as effective or

better than the formant frequency representation for five of

the twelve adjacent-vowel pairs. It is apparent then, that

the use of the PARCOR coefficients for identification of

synthesized steady state vowel-like sounds is as effective

as identification via formant frequencies. The PARCOR

coefficient technique for the identification of steady state

[I
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synthesized vowel-like sounds is a much quicker and more

computationally efficient method than that involving

computation of poles and zeros and back calculation of

formant frequencies and bandwidths. This is very important

in real-time identification of non-stationary signals.

Limitations of the Study

The least squares lattice is an optimal whitening

filter for an AR process when the order of the lattice

(number of zeros) is equal to the order of the AR process

(number of poles). For this study this is the case, as it

is desired to obtain the PARCOR coefficients for inputs of

known order. However, for an input signal whose origin is

not known, the performance of the filter will depend highly

on the order which is selected.

Another simplification made in this study for the

purpose of exactly matching the input and output transfer

functions is the modeling of the speech signal as an AR

process. This is a commonly used representation in the

literature, although it is extremely simplified. The

assumption of an AR process may only be made for non-nasal

sounds because the coupling of nasal cavities during

production of nasalized sounds adds an antiresonance or zero

to the speeech spectrum (Denes & Pinson, 1963). The process

may no longer be accurately modeled as all-pole. However,

I
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researchers have commonly used an all-pole representation of

higher order (Atal & Hanauer, 1971; Friedlander, 1982; Kay

& Marple, 1981; Rabiner & Schafer, 1978) for this purpose

as an aoproximation to a more desirable pole-zero (ARMA)

model because AR models are much easier to use.

The most severe limitation of the study is the fact

that synthesized speech-like sounds (rather than actual

speech sounds) are used. Although synthesized sounds are

used intentionally for the specific purpose of establishing

the PARCOR coefficients as equivalent to formant frequencies

as pattern recognition features, further studies need to

concentrate efforts on identifying actual spoken speech.

Actual speech cannot be accurately modeled as AR (even

steady-state vowel sounds) because the spectrum will contain

extra poles and zeros which are contributed by the following

factors: higher formant frequencies, lip radiation, actual

(not flat) excitation spectrum, aperiodicity of the

excitation function, damping of the vocal tract, any

laryngeal pathologies, measurement difficulty and error,

transmission loss between lips and microphone, and

inaccuracies in the mathematical speech production model

(Dunn, 1961; Fant, 1956,1959, 1963; Peterson, 1959;

Rabiner & Schafer, 1978, chap.3). An ARMA lattice is

appropriate in the case of actual speech in order to more

accurately estimate the spectrum. Friedlander and Mitra
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(1981) have used an ARMA lattice for the identification of

actual spoken nasal sounds; the results compared favorably

with those obtained by using a high order AR lattice. This

is also discussed by Fallside and Brooks (1976), Green

(1976), and Markel and Gray (1976). ARMA lattice algorithms

are presented by Lee, Friedlander and Morf, (1980), Morf,

Lee, Nickolls, and Vieira (1977), and Morf, Vieira and Lee

(1977).

Suggestions for Future Research

Very few speech sounds are steady state, and only very

briefly if at all. Use of the adaptive capability of the

lattice filter with appropriate selection of the fade

factor, (I-aCLSL), will enable the results of vowel

identification studies to be extended to simplify the

identification of more complex time-varying sounds.

Dipthongs are-commonly identified by researchers in the

speech field (Potter, Kopp & Kopp, 1961) by the time-varying

paths of their second formant frequencies between formant

locations for the two composite vowel sounds. It seems

reasonable that this could be transformed into an

identification via time-varying PARCOR coefficient(s).

Turner (1982) has used the time-varying behavior of the

PARCOR coefficients to identify stop consonants, which are

characterized by an even more complicated time-varying

frequency spectrum. It is likely that with extensions to a
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higher order AR or ARMA lattice the technique of using the

PARCOR coefficients as pattern recognition features would be

well suited to a multitude of applications in the field of

signal processing. Whether used to identify stationary

signals or to adaptively identify and track any type of

acoustic signal, the PARCOR coefficients of the complex

adaptive least squares lattice conveniently and efficiently

represent time domain signals. In a purely pattern

recognition context, the PARCOR coefficients are valuable

pattern recognition features in situations where the

frequency spectrum or pole locations are meaningless.

Deller and Anderson(1980) identified types of laryngeal

pathologies by looking at clusters of z-plane pole locations

in and on the unit circle. The actual pole locations have a

complicated relationship to the actual pathology; in their

case, all that was needed was a clustering parameter to

identify outlying points and types of clusters.

The identification of synthesized steady state

vowel-like sounds is a first step in the process of speech

identification. The clustering properties of the PARCOR

coefficients which are demonstrated in this research for the

purpose of vowel identification show the PARCOR coefficients

to be an effective and efficient vehicle for the

representation and transmission of frequency spectra

information. It is hoped that these results will inspire

K:
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other researchers to extend the study to enable the

" . simplification of other more complex system identification

problems.
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APPENDIX A

Selected Measures of Vowel Cluster Size and
Vowel Cluster Separability0

Given Nc clusters of p-dimensional pattern vectors

N where x r n= ,2, . . . p is the nth component of that

vector and Nj is the number of points in the jth cluster,

the centroid vector of the jth cluster Cj is

i k=l,2, . . . N]
N* - C j j=l,2, . . .*N

z

The intercluster distance between the ith and jth

cluster is the Euclidean distance between the centroids of

the clusters:

The intracluster distance is the Euclidean distance

from the kth vector in the jth cluster to the mean of that

cluster:

-kl,2, . . . N

Dk = lj -'k I

j=l,2, . . .

I,9

ns zi --

. ... ... Th in r cl s e dis anc is the Euclid~mlmmmmml~m~N e anm;m==. dis tnce,- .-,.., ,,

j- , . ..
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The average intracluster distance for the jth cluster is

1iN.

Ni k-I

from Tou and Gonzales (1974, p. 77)
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APPENDIX B

I Least Squares Lattice Equationso

Initialization (i-0,1, .. p)

ri (-I)= 0, i* p (4a)

Z (I )=ECLSL C CLSL=O.O0l and i~p (4b)

Aj -10,ijo (4c)

bk (-l)=0, 0.<kti-l,ji*0, and iuip. (4d)

Time update (ri 0)

eo (n )= ro (n )= x ( n) (4e)

S(-1)=0. (4g)

Order update (i--1, 2, . P).

ej.... (n)-r, 1 (n-i) (h

*i (n= i( )E- (n) (4i)

Kr' (n )=Ai(n)/Ef.. (n-i) (4j)

ej (n)-ei-I. (n)+K.!(n)ri-, (n-i) (4k)

ri (n)=rj-.. (n-l)+KP'(n)ei-l. (n) (41)4

2 r

/E(o(o

k nl) yi- -)
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Least Squares Lattice Variablesb

Lattice Parameter c  Symbol

Number of time samples (iterations) N

Filter order p

Time variable (n)

Stage variable, current stage i

Stage variable, lower stages k

Input time sample x(n)

Gain (n-1)

Fade factor (1-aCLSL

Step size parameter Ai(n)

Forward predictor coefficient vector ak (n)

l~k~i-i

Backward predictor coefficient vector b(Q (n)
k( )

Highest (ith) forward predictor a(') (n)

Previous vector of backward predictors (n-1)-k-I (n- )

Forward power Ei (fn)

Backward power Ei(n)

Forward PARCOR coefficient K (n)

Backward PARCOR coefficient Ki(n)

Forward error ei (n)

Backward error ri (n)
o iep

aefrom Hodgkiss & Presley (1982, pp. 331-332)

badapted from Hodgkiss Presley (1982, pp. 331-332)
Variables pertain to ith stage unless otherwise noted.
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